On the generalized Morse potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 326287
(http://iopscience.iop.org/0305-4470/32/35/307)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:43

Please note that terms and conditions apply.

On the generalized Morse potential

Simón Codriansky†, Patricio Corderoł and Sebastián Salamó§
\dagger Departamento de Matemáticas y Física, Instituto Pedagógico de Caracas, Av. Paez, El Paraíso, Caracas 1010, Venezuela
and
Centro de Física, Instituto Venezolano de Investigaciones Científicas, Caracas, 1020A, Venezuela \ddagger Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
§ Universidad Simón Bolívar, Departamento de Física, Apartado Postal 89000, Caracas,Venezuela
E-mail: codrians@reaccium.ve, pcordero@tamarugo.cec.uchile.cl and
ssalamo@fis.usb.ve

Received 3 May 1999, in final form 21 July 1999

Abstract

The equivalence between the generalized Morse (GMP) and Eckart potentials is shown. The study of the hypergeometric Natanzon potentials using $S O(2,1)$ techniques is applied to compute the eigenfunctions and eigenvalues of the Eckart (GMP) potential. The action of the group generators is studied, with the result that a family of Eckart potentials is obtained which is different from the one obtained in SUSYQM.

1. Introduction

In [1] an interesting study of the solubility of generalized Morse potentials (GMP) was performed using the $S O(2,2)$ algebraic treatment for the hypergeometric Natanzon potentials [2] developed in [3]. The purpose of this paper is to analyse the same problem using the techniques given in [4] which are based on the $S O(2,1)$ algebra. This last group has been applied to the study of both the hypergeometric and confluent hypergeometric [5] Natanzon potentials. Also this approach has been used recently as a simple method to study a q deformation of the Pöschl-Teller potentials [6].

Before analysing the GMP potential, a short summary of the results in [4] is presented to fix the notation and to exhibit the relevant results to be used. The hypergeometric Natanzon potentials V_{N}, those for which the Schrödinger equation can be transformed to an hypergeometric one, can be solved algebraically by means of the $S O(2,1)$ algebra as follows:
(a) a two-variable realization of $S O(2,1)$ is selected,
(b) the Schrödinger equation is written in terms of the Casimir operator of the algebra C, as $[H-E] \Psi(r, \phi)=G(r)[C-q] \Psi(r, \phi)$, where q is the eigenvalue of C, H is the Hamiltonian and E the corresponding eigenvalue. $G(r)$ is a function fixed by consistency, and
(c) the eigenfunctions of the Casimir have the form $\Psi(r, \phi)=\exp (\mathrm{i} m \phi) \Phi(r)$.

The hypergeometric Natanzon potentials are given by (we follow the notation of [7])

$$
\begin{align*}
& V_{N}=\frac{1}{R}\left(f z(r)^{2}-\left(h_{0}-h_{1}+f\right) z(r)+h_{0}+1\right) \\
& \tag{1}\\
& \quad+\frac{z(r)^{2}(1-z(r))^{2}}{R^{2}}\left[a+\frac{a+\left(c_{1}-c_{0}\right)(2 z(r)-1)}{z(r)(z(r)-1)}-\frac{5 \Delta}{4 R}\right]
\end{align*}
$$

where

$$
\Delta=\tau^{2}-4 a c_{0} \quad \tau=c_{1}-c_{0}-a \quad R=a z(r)^{2}+\tau z(r)+c_{0} .
$$

The constants $a, c_{0}, c_{1}, h_{0}, h_{1}$ and f are called Natanzon parameters. The function $z(r)$ must satisfy

$$
\frac{\mathrm{d} z(r)}{\mathrm{d} r}=\frac{2 z(r)(1-z(r))}{\sqrt{R}}
$$

The generators of the $S O(2,1)$ algebra: J_{1}, J_{2} and J_{0} satisfy the usual commutation relations: $\left[J_{0}, J_{1}\right]=\mathrm{i} J_{2},\left[J_{2}, J_{0}\right]=\mathrm{i} J_{1},\left[J_{1}, J_{2}\right]=-\mathrm{i} J_{0}$, as usual we define $J_{ \pm}=J_{1} \pm \mathrm{i} J_{2}$. The Casimir operator C is given by $C=J_{0}\left(J_{0} \pm 1\right)-J_{\mp} J_{ \pm}$. The two-variable realization of the $S O(2,1)$ generators is taken to be

$$
\begin{align*}
\exp (\mp \mathrm{i} \phi) J_{ \pm}= & \pm\left(\frac{z(r)^{1 / 2}(z(r)-1)}{z(r)^{\prime}}\right) \frac{\partial}{\partial r}-\left(\frac{\mathrm{i}}{2} \frac{(z(r)+1)}{\sqrt{z(r)}}\right) \frac{\partial}{\partial y} \\
& +\frac{(z(r)-1)}{2}\left[\frac{(p \mp 1)}{\sqrt{z(r)}} \pm \frac{\sqrt{z(r) z(r)^{\prime \prime}}}{z(r)^{\prime 2}}\right] \tag{2}
\end{align*}
$$

$J_{0}=-\mathrm{i} \frac{\partial}{\partial \phi}$
where $z(r)^{\prime}=\mathrm{d} z(r) / \mathrm{d} r$ and p is a function of the Natanzon parameters, independent of $z(r)$ and generally dependent on the energy of the system. The Casimir operator turns out to be

$$
\begin{align*}
C=(z(r)-1)^{2} & {\left[\frac{z(r)}{z(r)^{\prime 2}} \frac{\partial^{2}}{\partial r^{2}}+\frac{\mathrm{i}}{4 z(r)} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{\mathrm{i} p(z(r)+1)}{2(z(r)-1) z(r)} \frac{\partial}{\partial \phi}\right] } \\
& +(z(r)-1)^{2}\left[\frac{z(r) z(r)^{\prime \prime \prime}}{2 z(r)^{3}}-\frac{3 z(r) z(r)^{\prime \prime 2}}{4 z(r)^{4}}-\frac{\left(p^{2}-1\right)}{4 z(r)}\right] . \tag{4}
\end{align*}
$$

Since the representation D^{+}is used, the eigenvalues of the compact generator J_{0} are known to be

$$
\begin{equation*}
m(v)=v+\frac{1}{2}+\sqrt{q(v)+\frac{1}{4}} \quad v=0,1, \ldots \tag{5}
\end{equation*}
$$

and the energy spectrum is given by

$$
\begin{equation*}
2 v+1=\alpha(v)-\beta(v)-\delta(v) \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha(v)=\sqrt{-a E(v)+f+1}=p(v)+m(v) \\
& \beta(v)=\sqrt{-c_{0} E(v)+h_{0}+1}=p(v)-m(v) \tag{7}\\
& \delta(v)=\sqrt{-c_{1} E(v)+h_{1}+1}=\sqrt{4 q(v)+1}
\end{align*}
$$

The carrier space of the representation is found to be [4]
$\Psi_{p(\nu) q(\nu) m(\nu)}(r) \propto \exp (\mathrm{i} m(\nu) \phi) z(r)^{(p(\nu)-m(\nu)) / 2}(1-z(r))^{\sqrt{4 q(\nu)+1} / 2} R^{1 / 4}$

$$
\begin{equation*}
\times{ }_{2} F_{1}(-v, p(v)+m(v)-v, p(v)-m(v)+1, z(r)) \tag{8}
\end{equation*}
$$

where the subindices are the eigenvalues of the Casimir $q(\nu)$, the eigenvalues of the compact generator $m(v)$, and the parameter $p(v)$. These are the group parameters that characterize the Natanzon potentials.

2. GMP and Eckart potentials

The GMP ($V_{g m p}$) and Eckart $\left(V_{E}\right)$ potentials are given by

$$
\begin{align*}
& V_{g m p}=A_{1}\left(1-\frac{B_{1}}{\exp (\omega r)-1}\right)^{2}+C_{1} \tag{9}\\
& V_{E}=K_{1}+K_{2} \operatorname{coth}(\alpha r)+K_{3} \operatorname{csch}(\alpha r)^{2} \tag{10}
\end{align*}
$$

The constants C_{1} and K_{1} allow us to fix the minimum of the energy spectrum. It is an easy matter to check that both expressions coincide if

$$
\begin{array}{ll}
A_{1}=\frac{\left(K_{2}+2 K_{3}\right)^{2}}{4 K_{3}} & B_{1}=-\frac{4 K_{3}}{K_{2}+2 K_{3}} \\
C_{1}=\frac{4 K_{1} K_{3}-4 K_{3}^{2}-K_{2}^{2}}{4 K_{3}} & \omega=2 \alpha \tag{11}
\end{array}
$$

or equivalently
$K_{1}=\left(1+B_{1}+\frac{1}{2} B_{1}^{2}\right) A_{1}+C_{1} \quad K_{2}=-\frac{1}{2} A_{1} B_{1}\left(B_{1}+2\right) \quad K_{3}=\frac{1}{4} A_{1} B_{1}^{2}$
which show that $V_{g m p}$ and V_{E} are, in fact, the same function. From now on the notation in [8] is followed for V_{E}, namely

$$
\begin{equation*}
V_{E}=A^{2}+\frac{B^{2}}{A^{2}}-2 B \operatorname{coth}(\alpha r)+A(A-\alpha) \operatorname{csch}(\alpha r)^{2} \tag{13}
\end{equation*}
$$

The next step is to analyse algebraically the Eckart potential. The GMP is obtained by relating (A_{1}, B_{1}, C_{1}) with (A, B, α).

The Natanzon parameters for the Eckart potential are

$$
\begin{array}{ll}
a=c_{0}=\frac{1}{\alpha^{2}} & c_{1}=0 \quad h_{0}=\frac{\left(A^{2}+B\right)^{2}}{A^{2} \alpha^{2}}-1 \tag{14}\\
h_{1}=4 \frac{A(A-\alpha)}{\alpha^{2}} & f=\frac{\left(A^{2}-B\right)^{2}}{A^{2} \alpha^{2}}-1
\end{array}
$$

and the function $z(r)$

$$
\begin{equation*}
z(r)=\exp (2 \alpha r) \tag{15}
\end{equation*}
$$

as is easily checked. The determination of the energy spectrum is obtained from (6), (7) and (14) after requiring that it increase with v and $E(v=0)=0$, the result is

$$
\begin{equation*}
E(\nu)=A^{2}+\frac{B^{2}}{A^{2}}-(A+\alpha \nu)^{2}-\frac{B^{2}}{(A+\alpha \nu)^{2}} \quad v=0 \ldots v_{\max } \tag{16}
\end{equation*}
$$

The maximum value for v is obtained as follows. First we notice that the upper bound of $E(v)$ is $E(v) \leqslant V_{E}(r=\infty)=\left(B-A^{2}\right)^{2} / A^{2}$. With this result and using (16) we obtain $v_{\max }=[(\sqrt{B}-A) / \alpha]$ where $[x]$ is the integer part of x; this also leads to $B>A^{2}$.

From (16) together with (7) and (14) the values of $q(v), m(v)$ and $p(v)$ are

$$
\begin{equation*}
q(\nu)=\frac{A(A-\alpha)}{\alpha^{2}} \quad m(v)=\frac{A}{\alpha}+v \quad p(v)=-\frac{B}{\alpha(A+\alpha \nu)} . \tag{17}
\end{equation*}
$$

The expression for $z(r)$ given in (15) replaced in (2)-(4) give for the $S O(2,1)$ generators and the Casimir operator

$$
\begin{align*}
& J_{\mp}=\exp (\mp \mathrm{i} \phi)\left[-\mathrm{i} \cosh (\alpha r) \frac{\partial}{\partial \phi} \mp \frac{\sinh (\alpha r)}{\alpha} \frac{\partial}{\partial r}+p(\nu) \sinh (\alpha r)\right] \\
& J_{0}=-\mathrm{i} \frac{\partial}{\partial \phi} \tag{18}\\
& C=\sinh (\alpha r)^{2}\left[\frac{1}{\alpha^{2}} \frac{\partial^{2}}{\partial r^{2}}+2 \mathrm{i} p(v) \operatorname{coth}(\alpha r) \frac{\partial}{\partial \phi}+\frac{\partial^{2}}{\partial \phi^{2}}-p(\nu)^{2}\right] .
\end{align*}
$$

The results (16), (17) and (8) solve completely the Eckart or equivalently the GMP potentials, while (18) displays the generators and Casimir operators.
Remark. Operating with the Casimir on a function $\Phi(r, \phi)=\mathrm{e}^{\mathrm{i} m \phi} f(r)$ it is easily found

$$
\begin{aligned}
{[C-q] \Phi(r, \phi) } & =\frac{\sinh (\alpha r)^{2}}{\alpha^{2}} \mathrm{e}^{\mathrm{i} m \phi}\left[\frac{-\partial^{2}}{\partial r^{2}}-2 B \operatorname{coth}(\alpha r)+\frac{A(A-\alpha)}{\sinh (\alpha r)^{2}}\right. \\
& \left.+(A+\alpha \nu)^{2}+\frac{B^{2}}{(A+\alpha \nu)^{2}}\right] f(r)=0
\end{aligned}
$$

so that the radial part of $\Phi(r, \phi)$ is an eigenfunction of the Hamiltonian with an Eckart potential (13) and energy eigenvalue (16) if $\Phi(r, \phi)$ is an eigenfunction of the Casimir (18). This illustrates the relation given in the introduction between C and H in (b).

Next the action of the $S O(2,1)$ generators on the carrier space is going to be considered. A state labelled by $\{p(\nu), q(\nu), m(\nu)\}$ is given by (17)

$$
\begin{align*}
\Psi_{p(\nu) q(v) m(v)}= & S \exp (\mathrm{i} m(v) \phi) z(r)^{\frac{1}{2}(p(v)-m(\nu))}(1-z(r))^{\frac{1}{2}(\delta(v)+1)} \\
& \times{ }_{2} F_{1}(-v, p(v)+m(v)-v, 1+p(v)-m(v), z(r)) \tag{19}
\end{align*}
$$

where S is a normalization constant.
It is important to notice that there is a set of $S O(2,1)$ algebras that are labelled by the parameter $p(\nu)$ as is seen from (2); these will be denoted by $S O(2,1)^{p(\nu)}$. The number of allowed values of $p(\nu)$ is given by $\nu_{\max }$ for a given Eckart potential with (A, B, α) fixed. For each value of $p(\nu)$ there is a single state that belongs to the physical system being treated; all these states have the same label $q(v)$ given in (17).

Operating with J_{+}on the state (19) leads to a state labelled by $\{p(v), q(v), m(v)+1\}$, notice that $p(\nu)$ and $q(\nu)$ are fixed since they label a specific representation. From (17) the parameters that characterize the potential must change: invariance of $q(\nu)$ implies that A and α are unchanged, while invariance of $p(\nu)$ requires B to be modified.

From (17) it is seen that $m(v) \rightarrow m(v)+1=m(v+1)$ and since $p(v) \rightarrow p(v+1)=p(v)$ it implies

$$
\begin{equation*}
p(v)=-\frac{B}{\alpha(A+\alpha v)}=-\frac{B_{1}}{\alpha(A+\alpha(v+1))} \tag{20}
\end{equation*}
$$

where B_{1} is the new value of the parameter B. It is convenient to write this relation in such a way that the v dependence is exhibited explicitly

$$
\begin{equation*}
B(v+1)=B(v) \frac{A+\alpha(v+1)}{A+\alpha v}=B(v)\left(1+\frac{1}{m(v)}\right) \tag{21}
\end{equation*}
$$

solving this recursion relation leads to

$$
\begin{equation*}
B(\nu)=B_{0} m(v) \tag{22}
\end{equation*}
$$

where B_{0} is a constant independent of v. This v dependence of $B(v)$ amounts to a scaling of B_{0} and in this sense this situation is a particular case of the one reported in [9]. The result is that a new Eckart potential has been found in such a way that $(A, B(v), \alpha) \rightarrow(A, B(v+1), \alpha)$. From now on the fixed value of $p(\nu)$ is denoted p_{0}.

For the representation labelled by $\left\{q(\nu), p_{0}\right\}$ a family of Eckart potentials with parameters ($A, B(k), \alpha$) has been found with $B(k)$ given by (22) where k labels the states in the representation $\left\{q(\nu), p_{0}\right\} ; B_{0}$ is the parameter for $k=0$. Next it is asked whether there is an upper bound for the value of k. The answer comes from the observation that $k_{\max }$ grows as $\sqrt{B(k)}$ (due to the comment after (16)), while the label $m(k)$ grows linearly with k; the maximum value $k=K$ is obtained from

$$
\begin{equation*}
\sqrt{B_{0}}=\alpha \sqrt{m(K)} \tag{23}
\end{equation*}
$$

in other words, there is a finite number of Eckart potentials associated to p_{0}.
Next the explicit result of acting with the $S O(2,1)$ generators on the state (19) is exhibited. The result for J_{+}is

$$
\begin{align*}
J_{+} \Psi_{p(v) q(v) m(v)} & =-S(m(v)-p(v)) \exp (\mathrm{i}(m(v)+1) \phi) z(r)^{\frac{1}{2}(p(v)-m(v)-1)} \\
& \times(1-z(r))^{\frac{1}{2}(\delta(v)+1)}{ }_{2} F_{1}(-v-1, p(v)+m(v)-v, p(v)-m(v), z(r)) \tag{24}
\end{align*}
$$

The following identity has been used [10]:

$$
\begin{gathered}
{ }_{2} F_{1}(a+1, b+1, c+1, z(r))=\frac{-c}{a b z(r)(1-z(r))}\left((c-1){ }_{2} F_{1}(a-1, b, c-1, z(r))\right. \\
\left.+(z(r) b-c+1){ }_{2} F_{1}(a, b, c(r))\right)
\end{gathered}
$$

The normalization of (19) is obtained by noting that after acting once with J_{+}a factor $p(\nu)-m(v)$ appears so that starting from $v=0$ the action of J_{+}^{v} reproduces (19). The value $|S|^{2}=\int_{0}^{\infty}\left|\Psi_{p(\nu) q(\nu) m(\nu)}\right|^{2} \mathrm{~d} r$ with $\nu=0$ is a beta function and therefore, normalization of $\Psi_{p(v) q(v) m(v)}$ follows directly using the method presented in [1].

Similarly, for J_{-}acting on the state (19), it is found

$$
\begin{align*}
J_{-} \Psi_{p(v) q(v) m(v)} & =S v(1-2 m(v)+v) \exp (\mathrm{i}(m(v)-1) \phi) z(r)^{\frac{1}{2}(p(v)-m(v)+1)} \\
& (1-z(r))^{\frac{1}{2}(\delta(v)+1)}{ }_{2} F_{1}(-v, p(v)+m(v)-v-1,2+p(v)-m(v), z(r)) \tag{25}
\end{align*}
$$

after using [10]

$$
\begin{gathered}
{ }_{2} F_{1}(a-1, b, c-1, z(r))=\frac{1}{1-c}\left((1-c+b){ }_{2} F_{1}(a, b, c, z(r))\right. \\
+(1-z(r)) b_{2} F_{1}(a, b+1, c, z(r)) .
\end{gathered}
$$

Let us examine the result given in (24). We have proved that this resulting state corresponds to an Eckart potential with parameters $(A, B(v+1)=B(m(v)+1) / m(v), \alpha)$. Therefore, the Natanzon parameters for this system are those given in (14) with $B \rightarrow B(v+1)$, obviously the corresponding $z(r)$ is the same as given in (15). For the energy spectra we have the expression given in (16), where $B \rightarrow B(v+1)$, we then have
$E(\lambda)=A^{2}+\frac{B(\nu+1)^{2}}{A^{2}}-(A+\alpha \lambda)^{2}-\frac{B(\nu+1)^{2}}{(A+\alpha \lambda)^{2}} \quad \lambda=0 \ldots \lambda_{\max }$
where now $\lambda_{\max }=[(\sqrt{B(\nu+1)}-A) / \alpha]$. The remaining question that we must answer regarding the state under consideration is which eigenvalue λ corresponds to it. This can be done easily if we look, for example, at the first relation of (7), we have

$$
\begin{equation*}
\alpha(v)+1=\sqrt{-a E(\lambda)+f f+1} \tag{27}
\end{equation*}
$$

where $f f$ is given by

$$
f f=\frac{\left(A^{2}-B(v+1)\right)^{2}}{A^{2} \alpha^{2}}-1
$$

as is seen from (14). Using the fact that $\alpha(\nu)$ is obtained from (7) and (17) as

$$
\alpha(v)=\frac{-B+(A+v \alpha)^{2}}{\alpha(A+v \alpha)}
$$

than relation (27) is satisfied for $\lambda=v+1$.

3. Final comments

We have shown that the solvability of the GMP is due to the fact that it belongs to the class of the Eckart potential, a member of the hypergeometric Natanzon potentials which is solved algebraically by means of $S O(2,1)$ algebra. In the carrier space of each $S O(2,1)^{p(\nu)}$ representation, $\operatorname{CSO}(2,1)^{p(\nu)}$, there are eigenstates of Hamiltonians with different Eckart potentials. It has been shown that a finite number of such potentials appears. The states arise from the applications of the generators of the algebra on states belonging to a particular $\operatorname{CSO}(2,1)^{p(\nu)}$. In other words, in the space S defined as $S=\left\{C S O(2,1)^{p(v)} ; v=0 \ldots v_{\max }\right\}$, the states occurring in S are those corresponding to eigenstates of Eckart's potentials in such a way that they have the same parameter A with the parameters B varying according to (22).

In the algebraic SUSYQM [11] treatment of the Eckart potential, the supersymmetric operators connects states as follows: $(A, B, \alpha) \rightarrow(A-\alpha, B, \alpha)[8,12]$. Then the supersymmetric partner of (A, B, α) clearly are not in S defined above, since all the states in S share the same Casimir eigenvalues $q(v)$ which depend on A as is seen from (17). The result obtained here is a natural extension of the chain of potentials generated by SUSYQM.

Acknowledgment

SC and SS are grateful to Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Física for their hospitality where part of this work was done.

References

[1] Del Sol Mesa A, Quesne C and Smirnov Y F 1998 J. Phys. A: Math. Gen. 31321
[2] Natanzon G A 1979 Teor. Mat. Fiz. 38146
[3] Wu J, Alhassid Y and Gürsey F 1989 Ann. Phys. 196163 Wu J and Alhassid Y 1990 J. Math. Phys. 31557
[4] Cordero P and Salamó S 1993 Found. Phys. 23675
Cordero P and Salamó S 1994 J. Math. Phys. 353301
[5] Cordero P and Salamó S 1991 J. Phys. A: Math. Gen. 245299
[6] De Freitas A and Salamó S 1999 Nuovo Cimento B to appear
[7] Cooper F, Ginocchio J N and Khare A 1987 Phys. Rev. D 362458
[8] Dabrowska J, Khare A and Sukhatme U P 1988 J. Phys. A: Math. Gen. 21 L195
[9] Chaturvedi S, Dutt R, Gangopadhyaya A, Panigrahi P, Rasinauriu C and Sukhatme U 1998 Phys. Lett. A 248 109
[10] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)
[11] Witten E 1981 Nucl. Phys. B 185513
Salomonson P and van Holten J W 1982 Nucl. Phys. B 196509
[12] Gendenshtein L E 1983 JETP Lett. 38356

