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Abstract. The equivalence between the generalized Morse (GMP) and Eckart potentials is shown.
The study of the hypergeometric Natanzon potentials usingSO(2, 1) techniques is applied to
compute the eigenfunctions and eigenvalues of the Eckart (GMP) potential. The action of the
group generators is studied, with the result that a family of Eckart potentials is obtained which is
different from the one obtained in SUSYQM.

1. Introduction

In [1] an interesting study of the solubility of generalized Morse potentials (GMP) was
performed using theSO(2, 2) algebraic treatment for the hypergeometric Natanzon potentials
[2] developed in [3]. The purpose of this paper is to analyse the same problem using the
techniques given in [4] which are based on theSO(2, 1) algebra. This last group has been
applied to the study of both the hypergeometric and confluent hypergeometric [5] Natanzon
potentials. Also this approach has been used recently as a simple method to study aq-
deformation of the P̈oschl–Teller potentials [6].

Before analysing the GMP potential, a short summary of the results in [4] is presented
to fix the notation and to exhibit the relevant results to be used. The hypergeometric
Natanzon potentialsVN , those for which the Schrödinger equation can be transformed to an
hypergeometric one, can be solved algebraically by means of theSO(2, 1) algebra as follows:

(a) a two-variable realization ofSO(2, 1) is selected,

(b) the Schr̈odinger equation is written in terms of the Casimir operator of the algebraC,
as [H − E]9(r, φ) = G(r)[C − q]9(r, φ), whereq is the eigenvalue ofC, H is the
Hamiltonian andE the corresponding eigenvalue.G(r) is a function fixed by consistency,
and

(c) the eigenfunctions of the Casimir have the form9(r, φ) = exp(imφ)8(r).
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The hypergeometric Natanzon potentials are given by (we follow the notation of [7])

VN = 1

R
(f z(r)2 − (h0 − h1 + f )z(r) + h0 + 1)

+
z(r)2(1− z(r))2

R2

[
a +

a + (c1− c0)(2z(r)− 1)

z(r)(z(r)− 1)
− 51

4R

]
(1)

where

1 = τ 2 − 4ac0 τ = c1− c0 − a R = az(r)2 + τz(r) + c0.

The constantsa, c0, c1, h0, h1 andf are called Natanzon parameters. The functionz(r)must
satisfy

dz(r)

dr
= 2z(r)(1− z(r))√

R
.

The generators of theSO(2, 1) algebra:J1, J2 andJ0 satisfy the usual commutation relations:
[J0, J1] = iJ2, [J2, J0] = iJ1, [J1, J2] = −iJ0, as usual we defineJ± = J1± iJ2. The Casimir
operatorC is given byC = J0(J0± 1)− J∓J±. The two-variable realization of theSO(2, 1)
generators is taken to be

exp(∓iφ)J± = ±
(
z(r)1/2(z(r)− 1)

z(r)′

)
∂

∂r
−
(

i

2

(z(r) + 1)√
z(r)

)
∂

∂y

+
(z(r)− 1)

2

[
(p ∓ 1)√
z(r)

±
√
z(r)z(r)′′

z(r)′2

]
(2)

J0 = −i
∂

∂φ
(3)

wherez(r)′ = dz(r)/dr andp is a function of the Natanzon parameters, independent ofz(r)

and generally dependent on the energy of the system. The Casimir operator turns out to be

C = (z(r)− 1)2
[
z(r)

z(r)′2
∂2

∂r2
+

i

4z(r)

∂2

∂φ2
+

ip(z(r) + 1)

2(z(r)− 1)z(r)

∂

∂φ

]
+(z(r)− 1)2

[
z(r)z(r)′′′

2z(r)′3
− 3z(r)z(r)′′2

4z(r)′4
− (p

2 − 1)

4z(r)

]
. (4)

Since the representationD+ is used, the eigenvalues of the compact generatorJ0 are known to
be

m(ν) = ν + 1
2 +

√
q(ν) + 1

4 ν = 0, 1, . . . (5)

and the energy spectrum is given by

2ν + 1= α(ν)− β(ν)− δ(ν) (6)

where

α(ν) =
√
−aE(ν) + f + 1= p(ν) +m(ν)

β(ν) =
√
−c0E(ν) + h0 + 1= p(ν)−m(ν) (7)

δ(ν) =
√
−c1E(ν) + h1 + 1=

√
4q(ν) + 1.

The carrier space of the representation is found to be [4]

9p(ν)q(ν)m(ν)(r) ∝ exp(im(ν)φ)z(r)(p(ν)−m(ν))/2(1− z(r))
√

4q(ν)+1/2R1/4

× 2F1(−ν, p(ν) +m(ν)− ν, p(ν)−m(ν) + 1, z(r)) (8)

where the subindices are the eigenvalues of the Casimirq(ν), the eigenvalues of the compact
generatorm(ν), and the parameterp(ν). These are the group parameters that characterize the
Natanzon potentials.
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2. GMP and Eckart potentials

The GMP (Vgmp) and Eckart (VE) potentials are given by

Vgmp = A1

(
1− B1

exp(ωr)− 1

)2

+C1 (9)

VE = K1 +K2 coth(αr) +K3 csch(αr)2. (10)

The constantsC1 andK1 allow us to fix the minimum of the energy spectrum. It is an easy
matter to check that both expressions coincide if

A1 = (K2 + 2K3)
2

4K3
B1 = − 4K3

K2 + 2K3

C1 = 4K1K3− 4K2
3 −K2

2

4K3
ω = 2α

(11)

or equivalently

K1 = (1 +B1 + 1
2B

2
1)A1 +C1 K2 = − 1

2A1B1(B1 + 2) K3 = 1
4A1B

2
1 (12)

which show thatVgmp andVE are, in fact, the same function. From now on the notation in [8]
is followed forVE , namely

VE = A2 +
B2

A2
− 2B coth(αr) +A(A− α) csch(αr)2. (13)

The next step is to analyse algebraically the Eckart potential. The GMP is obtained by relating
(A1, B1, C1) with (A,B, α).

The Natanzon parameters for the Eckart potential are

a = c0 = 1

α2
c1 = 0 h0 = (A2 +B)2

A2α2
− 1

h1 = 4
A(A− α)

α2
f = (A2 − B)2

A2α2
− 1

(14)

and the functionz(r)

z(r) = exp(2αr) (15)

as is easily checked. The determination of the energy spectrum is obtained from (6), (7) and
(14) after requiring that it increase withν andE(ν = 0) = 0, the result is

E(ν) = A2 +
B2

A2
− (A + αν)2 − B2

(A + αν)2
ν = 0 . . . νmax. (16)

The maximum value forν is obtained as follows. First we notice that the upper bound of
E(ν) is E(ν) 6 VE(r = ∞) = (B − A2)2/A2. With this result and using (16) we obtain
νmax= [(

√
B − A)/α] where [x] is the integer part ofx; this also leads toB > A2.

From (16) together with (7) and (14) the values ofq(ν),m(ν) andp(ν) are

q(ν) = A(A− α)
α2

m(ν) = A

α
+ ν p(ν) = − B

α(A + αν)
. (17)
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The expression forz(r) given in (15) replaced in (2)–(4) give for theSO(2, 1) generators and
the Casimir operator

J∓ = exp(∓iφ)

[
−i cosh(αr)

∂

∂φ
∓ sinh(αr)

α

∂

∂r
+ p(ν) sinh(αr)

]
J0 = −i

∂

∂φ
(18)

C = sinh(αr)2
[

1

α2

∂2

∂r2
+ 2ip(ν) coth(αr)

∂

∂φ
+
∂2

∂φ2
− p(ν)2

]
.

The results (16), (17) and (8) solve completely the Eckart or equivalently the GMP potentials,
while (18) displays the generators and Casimir operators.

Remark. Operating with the Casimir on a function8(r, φ) = eimφf (r) it is easily found

[C − q]8(r, φ) = sinh(αr)2

α2
eimφ

[−∂2

∂r2
− 2B coth(αr) +

A(A− α)
sinh(αr)2

+(A + αν)2 +
B2

(A + αν)2

]
f (r) = 0

so that the radial part of8(r, φ) is an eigenfunction of the Hamiltonian with an Eckart potential
(13) and energy eigenvalue (16) if8(r, φ) is an eigenfunction of the Casimir (18). This
illustrates the relation given in the introduction betweenC andH in (b).

Next the action of theSO(2, 1) generators on the carrier space is going to be considered.
A state labelled by{p(ν), q(ν),m(ν)} is given by (17)

9p(ν)q(υ)m(ν) = S exp(im(ν)φ)z(r)
1
2 (p(ν)−m(ν))(1− z(r)) 1

2 (δ(ν)+1)

× 2F1(−ν, p(ν) +m(ν)− ν, 1 +p(ν)−m(ν), z(r)) (19)

whereS is a normalization constant.
It is important to notice that there is a set ofSO(2, 1) algebras that are labelled by the

parameterp(ν) as is seen from (2); these will be denoted bySO(2, 1)p(ν). The number of
allowed values ofp(ν) is given byνmax for a given Eckart potential with (A, B, α) fixed. For
each value ofp(ν) there is a single state that belongs to the physical system being treated; all
these states have the same labelq(ν) given in (17).

Operating withJ+ on the state (19) leads to a state labelled by{p(ν), q(ν),m(ν) + 1},
notice thatp(ν) andq(ν) are fixed since they label a specific representation. From (17) the
parameters that characterize the potential must change: invariance ofq(ν) implies thatA and
α are unchanged, while invariance ofp(ν) requiresB to be modified.

From (17) it is seen thatm(ν)→ m(ν)+1= m(ν+1) and sincep(ν)→ p(ν+1) = p(ν)
it implies

p(ν) = − B

α(A + αν)
= − B1

α(A + α(ν + 1))
(20)

whereB1 is the new value of the parameterB. It is convenient to write this relation in such a
way that theν dependence is exhibited explicitly

B(ν + 1) = B(ν)A + α(ν + 1)

A + αν
= B(ν)

(
1 +

1

m(ν)

)
(21)

solving this recursion relation leads to

B(ν) = B0m(ν) (22)
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whereB0 is a constant independent ofν. Thisν dependence ofB(ν) amounts to a scaling of
B0 and in this sense this situation is a particular case of the one reported in [9]. The result is
that a new Eckart potential has been found in such a way that (A,B(ν), α)→ (A,B(ν +1), α).
From now on the fixed value ofp(ν) is denotedp0.

For the representation labelled by{q(ν), p0} a family of Eckart potentials with parameters
(A,B(k), α) has been found withB(k) given by (22) wherek labels the states in the
representation{q(ν), p0}; B0 is the parameter fork = 0. Next it is asked whether there
is an upper bound for the value ofk. The answer comes from the observation thatkmax grows
as
√
B(k) (due to the comment after (16)), while the labelm(k) grows linearly withk; the

maximum valuek = K is obtained from√
B0 = α

√
m(K) (23)

in other words, there is a finite number of Eckart potentials associated top0.
Next the explicit result of acting with theSO(2, 1) generators on the state (19) is exhibited.

The result forJ+ is

J+9p(ν)q(ν)m(ν) = −S(m(ν)− p(ν)) exp(i(m(ν) + 1)φ)z(r)
1
2 (p(ν)−m(ν)−1)

×(1− z(r)) 1
2 (δ(ν)+1)

2F1(−ν − 1, p(ν) +m(ν)− ν, p(ν)−m(ν), z(r)).
(24)

The following identity has been used [10]:

2F1(a + 1, b + 1, c + 1, z(r)) = −c
abz(r)(1− z(r)) ((c − 1) 2F1(a − 1, b, c − 1, z(r))

+(z(r)b − c + 1) 2F1(a, b, c(r))).

The normalization of (19) is obtained by noting that after acting once withJ+ a factor
p(ν) − m(ν) appears so that starting fromν = 0 the action ofJ ν+ reproduces (19). The
value|S|2 = ∫∞0 |9p(ν)q(ν)m(ν)|2 dr with ν = 0 is a beta function and therefore, normalization
of 9p(ν)q(ν)m(ν) follows directly using the method presented in [1].

Similarly, for J− acting on the state (19), it is found

J−9p(ν)q(ν)m(ν) = Sν(1− 2m(ν) + ν) exp(i(m(ν)− 1)φ) z(r)
1
2 (p(ν)−m(ν)+1)

(1− z(r)) 1
2 (δ(ν)+1)

2F1(−ν, p(ν) +m(ν)− ν − 1, 2 +p(ν)−m(ν), z(r))
(25)

after using [10]

2F1(a − 1, b, c − 1, z(r)) = 1

1− c ((1− c + b) 2F1(a, b, c, z(r))

+(1− z(r))b 2F1(a, b + 1, c, z(r)).

Let us examine the result given in (24). We have proved that this resulting state corresponds
to an Eckart potential with parameters(A,B(ν + 1) = B(m(ν) + 1)/m(ν), α). Therefore, the
Natanzon parameters for this system are those given in (14) withB → B(ν +1), obviously the
correspondingz(r) is the same as given in (15). For the energy spectra we have the expression
given in (16), whereB → B(ν + 1), we then have

E(λ) = A2 +
B(ν + 1)2

A2
− (A + αλ)2 − B(ν + 1)2

(A + αλ)2
λ = 0 . . . λmax (26)
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where nowλmax = [(
√
B(ν + 1) − A)/α]. The remaining question that we must answer

regarding the state under consideration is which eigenvalueλ corresponds to it. This can be
done easily if we look, for example, at the first relation of (7), we have

α(ν) + 1=
√
−aE(λ) + ff + 1 (27)

whereff is given by

ff = (A2 − B(ν + 1))2

A2α2
− 1

as is seen from (14). Using the fact thatα(ν) is obtained from (7) and (17) as

α(ν) = −B + (A + να)2

α(A + να)

than relation (27) is satisfied forλ = ν + 1.

3. Final comments

We have shown that the solvability of the GMP is due to the fact that it belongs to the
class of the Eckart potential, a member of the hypergeometric Natanzon potentials which is
solved algebraically by means ofSO(2, 1) algebra. In the carrier space of eachSO(2, 1)p(ν)

representation,CSO(2, 1)p(ν), there are eigenstates of Hamiltonians with different Eckart
potentials. It has been shown that a finite number of such potentials appears. The states
arise from the applications of the generators of the algebra on states belonging to a particular
CSO(2, 1)p(ν). In other words, in the spaceS defined asS = {CSO(2, 1)p(ν); ν = 0 . . . νmax},
the states occurring inS are those corresponding to eigenstates of Eckart’s potentials in such
a way that they have the same parameterA with the parametersB varying according to (22).

In the algebraic SUSYQM [11] treatment of the Eckart potential, the supersymmetric
operators connects states as follows:(A,B, α) → (A − α,B, α) [8, 12]. Then the
supersymmetric partner of(A,B, α) clearly are not inS defined above, since all the states
in S share the same Casimir eigenvaluesq(ν) which depend onA as is seen from (17). The
result obtained here is a natural extension of the chain of potentials generated by SUSYQM.
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